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1. INTRODUCTION AND SUMMARY

1.1 Objectives of Study

The area of research to which this study relates is that of pattern

recognition and in particular, the automated recognition of objects

irrespective of the location , orientation and magnitude of such objects

in the field of view of the “observer ” .

A new type of Associative Memory (AM ) had been proposed and explored
1,2

previously by the principal investigator and the overall objective of

this study was to determine the feasibility of using this Associative

Memory Technique in this context to surmount the problems of location,

orientation and scale in automated pattern recognition.

One specific objective was to study certain characteristics of the

• 
• Associative Memory technique which are of particular importance to this

application, including, memory capacity, use in hierarchial form, and

use for interpolative prediction of attribute values.

Another specific objective was to implement the interfacing of CCD

and/or conventional Vidicon television cameras with computers in order

to provide convenient means for acquisition of patterns for input into

computer memory for use in the Associative Memory studies.

Yet another specific objective was to indicate how such Associative

Memories might be configured in realistic systems for automated tracking

of objects, with capability of coping with changes in position, orienta-

tion and relative size of the objects, without the need for human

intervention.

1

L 
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2

In this work, the basic approach has been to consider storing a

moderately large number of patterns in a multiplexed manner in a single

memory without regard to a certain amount of degradation of information.

g . 
The aim is to span pattern space sufficiently well albeit coarsely so

that “recognition” with one of such memories suffices to place the

pattern reasonably accurately within a (large) volume in pattern space.

• Successive use of a hierarchy of similar memories suffices to define the

pattern progressively more accurately.

For this approach to be of practical interest, it is necessary that

the technique be demonstrably faster and more economical in use of

memory capacity relative to other known pattern recognition techniques.

1.2 Sunmiary of Work Done and Results Obtained

The work done can be classified into three categories, these being :

* Investigations of certain basic characteristics of such

Associative Memories when implemented for pattern recognition ,

* Implementation of a solid state lOOxlOO CCD sensor television

camera and computer interface and also of a full resolution

Vidicon television camera computer interface, both suitable

for acquisition of patterns ,

* Use of the solid state CCD array camera and the Associative

Memory to deal with specific problems of position, scale and

orientation in pattern recognition.

Although some interesting work remains to be done, the work done

in this study show that:
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• I * Many patterns can indeed be stored in a multiplexed manner

in a single Associative Memory so that any incident pattern

can be simultaneously compared with all of the stored patterns

• . in a parallel processing manner and can be recognized as being

• most J ike one of the stored patterns.

* The maximum number of such training set patterns which can be

stored in an overlaid, or multiplexed, manner without causing

an error in the recognition process is called the Memory

Capacity, N .

* If the pattern presented for recognition is restricted to being

one of the training set, then the Memory Capacity, N ,  can be

a large fraction of the dimension of the memory. For example,

for patterns consisting of 64 pixels, 11 patterns can be stored

I - 
in an overlaid manner and can be recognized without error. Such

procedures provide the basis for enormous savings in processing

time and computer storage space.

* For circumstances where interpolation and prediction of attri-

butes are required the number of patterns which can be usefully

stored is generally smaller than N , being typically about 0.75N .

* Memory capacity also depends upon how dissimilar the stored

patterns are. Memory Capacity increases with the Hamming

• 
.
. . - Distance between the patterns stored.

LIT
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* The tendency of such memories to group nearly alike patterns

together can be exploited to carry out recognition by succes-

sive applications of such memories. The first step might be

to assign the detected object into one of a few course cate—

gorizations. Successive applications provide finer discrimina-

tion and finally conformed recognition as being a specific type

of object with detailed characteristics.

* The basic Associative Memory technique is described in Section 2.

* Results of investigations of Memory Capacity are described in

Section 3 and the us ’ of such memories for interpolative estimate

of attribute values is discussed in Section 4.

* The lOOxlOO compact CCD image sensor developed and used for providing

high speed pictorial input to a computer system for pattern recog-

nition research is described in Section 5, together with brief

mention of a full resolution system using regular television cameras,

and magnetic disc storage and a time base expander.

L * Use of the combined CCD video system and the Associative Memory for

recognition of objects regardless of position, scale and orienta-

tion is described in detail in Section 6.

____ ~-~--~- 
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2. THE ASSOCIATIVE MEMORY TECHNIQUE

2.1 A Q~ualitative Discussion of the Underlying Concepts

Consider for example, a simple, highly stylized, two dimensional

view of a vehicle in silhouette. For a human , such a depiction would

be easily recogni zed as such regardless of changes in the size, loca-

tion or orientation of the truck silhouette. An automated recognizer

working without human intervention could do the sane but would have to

work quite hard at the task having to resort to such measures as com-

puting the gradient along the contour and/or computing many moments of

the object in order to be able to decide whether a vehicle had been

detected. The task is even more difficult if internal details are also

important and if several different types of objects are of interest.

An alternate approach to the task of recognizing objects regardless

of location, orientation and scale would be to store patterns repre-

senting all possible combinations of such variables and to compare any

incident pattern with all such possibilities. In general this alternate

approach is not practicable because of the very large numbers of patterns

required to cover all eventualities and because of the excessive memory

capacity requirements and long processing time.

The Associative Memory technique approach to surmounting the problems

of location, orientation and scale amounts to adopting the generally

discredited latter approach , relying on several characteristics of such 
—

Associative Memories to overcome the otherwise unacceptable large memory

and processing time requirements. - 

—-~~~~~~~~~ -— - —~ —— -• ——-— -—— •~~ -
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• One of the principal concepts consists of storing several patterns

14 in an overlaid, multiplexed, manner so that all of these stored patterns

can be compared with any incident pattern in one simultaneous operation.

Not only is there savings in storage space but there is no need to fetch

stored patterns for comparision , carrying out the comparison , storing

the results and then fetching the subsequent pattern and so on. In this

manner, the incident pattern can be compared with larger numbers of

patterns in any given time interval.

Another characteristic of such memories is that it is fortunately

“fuzzy” in just about the right manner , in two aspects. First of all,

it can be arranged so that only objects which are greatly dissimilar arc

recognized to be different. Thus in a first detection stage , it is not

important what the precise nature of the object is but it is merely

recognized to be present in a certain quadrant. Secondly , it is not

important that all locations and sizes and orientations be represented ,

since the memory allows for interpolation between key patterns. In this

manner , the number of patterns representing different combinations of

size , orientation and location can become manageable.

Further details of the technique can best be discussed quantitatively.

2.2 Mathematical Formulation of Basic System

The basic Associative Memory technique is described in this sub—

section.

This subsection also includes a description of notation

and of definition of binary vector opera tions resulting in vectors

(vector sum and vector product) or scalars (inner product). First, the
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pattern vectors and constraints on them are defined . Next the associated

references are introduced and the associative memory is constructed .

Finally , the recognition technique is defined and compared to template

— 
- matching (correlation). For thi.s comparison , a memory capacity is de—

fined for t~-e associative memory.

Notation. A vectnr will be represented by an upper case aiphabatical

symbol . The components of a vector will be denoted by corresponding lower

case letters. These upper case vectors and lower case components may

be subscripted. Thus the kth component of the vector X is X
k

. Uowev~r,

the kt~ component of the vector X , would be written as x .
—3

Binary Vector Operations. Vector sum , vector product, and scalar

product definitions follow. The vector sum S X + Y of two vectors X

arid Y (S,X ,Y all K dimensional) is the usual operation with the components

being given by

S
k 

= X
k 

= (2.2.1)

The vector product P = X Y is defined by the rule that the com-

ponents of p are obtained by simple component by component multiplication

of the vector multiplier and multiplicand X and Y, namely

= x
k
y
k 

(2.2.2)

The scaLer product of two vectors is defined conventionally , i.e.,

K
= L x

kYk 
(2.2.3)

k 1
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Pattern Vectors. In this method , tne patterns are coded into

vector s, the components of which are binary valued , being + 1. Typically ,

N such pattern vectors would be stored in an Associative Memory . In K

dimens ional space, each of the pattern vectors, X (n=l ,...,N), would

have K components , with the kth compoonent of the ~th vector being denoted

x . These vectors are all of the same length ~n the sense that

<X X > = K ( 2 . 2 . 4 )
-n-n

and therefore may be considered as rkormalized .

Reference Vectors. A set of orthonormal basis vectors spanning the

M dimensional pattern space is used as reference vectors in the construc-

t~on of an Associative Memory and in the recognition process. In addition ,

if this memory is to be implemented in software , it is necessary that

there exist a fast discrete transform algorithm with respect to represen—

t~ition in terms cf these orthonormal reference vectors. Walsh functions

satisfy all these requirements and are often used as reference vectors in

this work . Other equivalent sets may also be used as appropriate.

Associative Memory Construction. In this technique , each pattern

vector is multiplied by a reference vector and the vector product is

stored .

For one pattern X and the associated reference Y we have the

memory

M = X Y  (2.2.5)

This one pattern memory has the property that multiplciation of M by

X represents Y exactly , i.e.,

= y (2.2.6)

-

~

-— -
-

~

-- - -- -

~

-- - -

~

-----• —-- --- -- - - - --
~~~~~~~~

-

~~~~

- -

~~ --



- - —— p - - - ~~~~~~~~~~~~~~~ ~~~r~~~~r - - I --~~~~~~~- •

9

For a single pattern stored , each component of the memory vector

M is also binary valued, + 1.

In this technique , storage of many patterns is achieved by adding

the pattern—reference products cumulatively, so that although the memory

M of N patterns rem~~ ns a K component vector , the components are no lonqer

binary valued but may ~iave any value between -
~
- N.

For N patterns stored , the memory M
(N) 

is given by

N
M = ~ (2.2.7)— ( N )  —n—-n

n=l

and each of the components of M (N) is given by

N

~ x y (2.2.8)
K n,k n,kn= 1

Recognition. Recognition of an unknown pattern X . is carried out

in two steps. The first step Consists of multiplying the memory M (N)

by x . to form the pattern memory product. In the case of a single stored

pattern, the associated reference Y . would have been recovered and this

would conssitute recognition of the pattern being X . . In the case of N

patterns, if x . is a member of the training set, i.e., one of the stored

patterns , then the pattern memory wil l be primarily Y. together with

“noise”.

For M = ~ X Y (2.2.9)
—(N) —n--n 

---~~ ~~~~~- -~~~~~~~~--—- • -~~~~- -- -- -~~~~~
---

~~ 
- - - -

~~~~~~~~~~~~~~~
-
~~~~~~~~

-- - - - - -
~~
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X .M = Z X . X Y k C Y ( 2 . 2 . 1 0 )
• —j—(N) —j—n—n k—k

‘I

where C = Z < X .X  Y Y > (2.2.11)
k n

and is obtained by using the Fast Walsh Transform algorithm.

More specifically X.M = E < X .X Y I > Y
—j —  (N)  

~ , k

= E ~~X .X Y Y . ~~y + ) < x x y y  > 1
n n k

k~ j

• N K
= Y  + z < x .x y y . > y . + E ~~~<X . X Y Y > Y

~~ n~ j 
~~~~ i-~~i-’~~~ ~~ n l  k l

k~j

( 2 . 2 . 1 2 )

It is seen that in this case the associated reference I. is not recovered
—J

with unit coefficient, the noise term being ) <X .X X Y .> Y .. In addi-
—J--n---n—J —J

tion , the coefficients for all the other Walsh functions do not vanish

either. :n this method , of all the k Walsh fun ctions , we are interested

only in those which were used as references. In the third term in equa-

tion (2.2.12), for each

N
C < X.X.>Y + E <X.X I I > 1 ( 2 . 2. 1 3 )
k —31( 

~~ n l
n~k

and it is seen that C
k 

for n ~ k carry information also. The k=n term

is in essence the cross correlation between patterns X and X ., while
-ii -

~~

the k / n sum represents the noise.

L 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~

-•-——--. --- ~~~~ -•  - ~~~~~~~ 
_

~~~~~

_

~~~~
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In practice, members of the training set can be recovered exceedingly

well and the real utility of this technique goes beyond that straight-

• : forward step.

Of greater importance is the performance of the technique when it

is used to estimate the values of attributes of patterns other than those

of the training set.

Estim ation of attribute values constitutes the second step of the

recognition process. Namely, if for X ,  the members of the training

set, the value of the attribute A~’~ are A~
’
~ , then the expectation

value of A~
’
~ for pattern X. is predicted (or estimated to be)

< A W> . = Z f ( C  ) A W (2.2.14)
3 II fl

I-I

where f(C ) denotes some nonlinear functional of the coefficients Cn n

Memory Capacity. The memory capacity N is defined as the largest

number of patterns which can be stored in the memory without errors in

the recognition of members of the training set.

The foregoing discussion indicates that there is no error at all

when only one pattern is stored in the memory M
(N) 

(N=l). Further storage

of pattern information in the memory in the multiplexed manner peculiar

to this technique, degrades the reconstructed reference Y. with the noise

term E < X .X I Y .> Y .. This noise term increases with increasing N ,
n/j  

j n n j  —J

and causes errors intrinsic to this process to occur as the memory capa-

city is exceeded .

Present incomplete results indicate the N depends not only on the

dimension of the pattern space but also on the average Hamming distance

—-— — — - -  ~~—- - •- —- -- S-—— •
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• between patterns, as evaluated over the set of training patterns.

A comparison with template matching pattern recognition gives some

insight. For each incident pattern X., template matching requires 1(14

operations to form the N correlation coefficients <X . X > , where k is
—3 .-n

the dimension of the pattern space and N is the total number of patterns

in the training set. The associative memory technique uses K(l+Log
2
K)

operations, K to multiply X. and M (N) and KL0g2K addition/subtractions

for fast computation of the Walsh representation of X .M
(N)
. Thus when

N<l+Log
2
K, template matching is faster. Conversely, associative memory

techniques are faster when N>l+Log
2
K. However for N > N , the memory

capacity, a single associative memory technique suffers from intrinsic

errors. Thus for K = 512, any value of N above 10 represents advantage

for the Associative Memory technique. Experimentally it has been deter-

mined that for K = 512, N can be about 36, representing an advantage

of 36 to 10. For K = 64, N is about 11 representing an advantage of

about 11 to 7.

2.3 Additional Features and Options

One of the principal obstacles to general application of the

technique described in subsection 2.2 is the requirement that the com-

ponents of the pattern vector be binary valued. The state of a system

can indeed be represented by an array of numbers but in general they

will not be binary valued. So far, preliminary results indicate that

there are three ways of coping with this aspect of the technique.

The first method consists of relaxing the requirement that the

components be binary. The method does work but the “noise” is generally

______ _______ 4
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greater and much of the mathematical niceties is lost.

The second method consists of representing an integer valued

component by an appropriate number of +1 values with zero being repre-

sented by those spaces all being filled with -1. This method is ob—

viously only suitable for pattern vectors when components are small

integers.

— A third method is suitable for use with any general pattern vector

and consists of representing each decimal digit of a real number as a

positive (or negative integer) using the coding of the second method.

However in the recognition process, before the Walsh transform is carried

• out, the pattern-memory product is multiplied by a masking pattern P

which assigns a weight of 100 to bits representing the decimal digit in

the 100 place , a weight of 10 to bits representing the decimal digit in

the 10 position and so on.

Use of this last method results in using 30 bits for representation

of a three digit decimal number and is consequently very wasteful. How-

ever this seeming expansion in dimensions results in increased multi—

plexing and consequent savings in memory storage needs and processing

time. 

— - - — --~~~~~~ - - - - --• -~~~~ 
-•--—-
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3. MEMORY CAPACITY INVESTIGATIONS

- 1 4
For each value of K, the dimensionality of the memory, sets of

patterns were generated in the following manner :

* A randomly generated sequence of K bits is used as base

pattern.

- 
- 

* Other patterns differing from the base pattern by a specified

- I number of bits are generated by changing the required number

of bits, care being taken to see that the entire set of pat-

terns so generated are not only the specified Hamming distance

away from the base pattern but are at least that same distance

apart from each other.

These patterns are progressively stored in Associative Memory and

• 
recognition of these members of the training set is tested until at

some stage , a mistake is observed. The number of patterns stored at that

stage is defined to be the memory capacity , N .

For each value of K, and for any one set of such patterns, the

memory capacity can be optimized by appropriate choice of the references

associated with the patterns. A generally effective procedure is to

choose the references uniformly spaced to scan the entire sequency space.

A more precise optimization procedure consists of examining the “power

spectrum” in sequency space and varying the references so as to obtain

minimum overlap of the spectral contributions from the various patterns.

Memory capacity results are listed in Table 3.1 and also shown plotted 
—

in Figure 3.1 together with some values which indicate the advantages

this method have relative to straightforward template matching. 

- -~~~~— - ~~~~ - 
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4. RECOGNITION ACCOMPANIED BY INTERPOLATIVE ESTIMATION OF ATTRIBUTES

14 This type of ir~mory would be of limited utility if applications

were limited to correct identification of members of the training set

• : and happily this is indeed not the case.

The ability to carry out “recognition” in the sense of being able

to provide a correct estimate of the value of an attribute was demon—

strated in two contexts .

In the first context, a set of patterns each consisting of twelve

integer valued (0 ~u 5) features were assigned attribute values. This

body of data originated in a medical context and in fact it is not known

whether the attribute values so assigned are entirely self consistent.

For one set of such patterns , each pattern was coded into a sequence

of 41 binary valued components and the sequence was repeated in times to

fill a space of dimension K. (in = 3 for K = 128, m = 6 for K = 256).

For one set of patterns, for K = 128, eight patterns were stored

in memory and then used to provide recognition for the remaining

available patterns. The patterns, assigned attribute values and esti-

mated attribute values are shown in Table 4.1 and it is seen that the

performance is very good, the root mean square error being about 0.6%.

Similarly for another set of such patterns, using K = 256, the

corresponding patterns, assigned attribute values and estimated values

are shown in Table 4.2 and it is seen that performance is again very

good with the root mean square error being on the order of 0.5%.

In a sense , these good results are not entirely satisfactory since

it is not known whether the assigned attribute values are self consis-

tent. This is to say that it is not known whether there is one metric

r
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to the pattern space or whether at the minimum the metric is a function

- • of space distorting perhaps in a smooth and continuous manner depending

• on position in the multidimensional pattern space . it is suspected

that the latter case is more nearly correct and the demonstration

of correct recognition is also a demon:;t’~~tion of the ability of this

memory to accosunodate this feature of the task of pattern recognition .

I: — 
I In another instance, the capability of this type of memory to

“recognize” patterns other than those in the training set, is demon-

strated more unequivocably .

In this second instance, each of the patterns consisted of two

pulses at a specified distance from each other. With a certain number

of such patterns stored, the question was whether any new pattern could

- 
I 

then be recognized in terms of the interpulse distance being estimated

- 
-

- correctly.

The pulses used for formation of one of such memories are shown

plotted in Figure 4.1. Comparison of estimated and actual interpulse

distances are shown plotted in Figures 4.2  and 4.3.  

-~ ~~~~~~~~~~~~~~
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5 .  IMPLE MENTATION OF VIDEO SYSTEMS FOR USE IN COMPUTER PATTERN

RECOGNITION AND AUTOMATED TRACKING

In support of the theoretical work of this program, a video system

was developed consisting of a solid state CCD TV camera (using the Fair-

child CCD 202 array with lOOxlOO sensor elements), camera lens (zoom),

— pan and tilt servocontrols, level shifters required for CCD operation,

television minotors, A/D and D/A converters, digital memory and a CAMAC

interface. Although considerable ingenuity was displayed in that aspect

of work and although the system so implemented is quite versatile and

suited to general pattern recognition and automated tracking work, it

is not useful to go into details of that work in this report. Such

details can be found in a CWRU Master’s Thesis (1977) by Kenneth J. Lauer.

In essence, using that system , it is possible to “snatch” a frame

of a scene and to display the snatched frame on a regular T.V. monitor

as well as to feed the information to a computer memory for processing .

Computer generated tracking signals can be fed back to servos for auto-

mated tracking of any recognized object. A block diagram of the system

is shown in Figure 5.1 and a view of the system is shown in Figure 5.2.

Some performance characteristics of the system are shown listed in Table

5.1. Other demonstrations of the capabilities of the system are provided

by printer output exhibited in Figures 5.3 and 5.4.

Another such system using full resolution Vidicon television cameras

rather than CCD arrays was also developed in our laboratories with partial

support from this project . A view of that system is shown in Figure 5.5

arid system specifications are listed in Table 5.2. Further details are

available from CWRU Master’s Thesis (1978) by John W. Allen .

L. 
__________ _________________________________ 

— 
_ _ _ _ _
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In this latter case, customary full 512 line resolution is avail-

14 able and storage is achieved using a magnetic disc. A time base ex-

pander provides interfacing between the video rates of data acquisition

and the somewhat lower rate of data acceptance by computer memories.

Higher resolution and multipattern storage capability is gained at the

cost of large overall size and greater vulnerability to mechanical

disturbances.

The CCD system has been used extensively in this present program

and the multipattern magnetic disc/time base expander system is now

also available.

6. USE OF ASSOCIATIVE MEMORIES FOR SURMOUNTING PROBLEMS OF LOCATION,

SCALE AND ORIENTATION IN AUTOMA TED PATTERN RECOGNITION

The results reported in previous sectiens indicate that the pre-

liminary steps necessary for carrying out the principal investigation

had indeed been implemented successfully. Namely , under appropriate

conditions the associative memory technique does work satisfactorily

and the television sensor/computer/servo pan-tilt zoom system also

works well.

Given the capabilities so described, those two components were

combined to provide for capability to achieve detection and recognition

of an object regardless of variations in location, scale and orienta-

tion. The results of that investigation are reported in this section.

Two types of objects were presented for recognition by the tele-

vision sensor/associative memory system. Recognition was carried out

using a hierarchy of three associative memories.
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The function of the first Associative Memory was to locate the
14

obDect and to pan and tilt the television camera so as to center it.

The Associative Memory was constructed from nine patterns consisting of

a dark square against a light background. The dark squares in each pat-

tern were positioned so that when all nine were overlayed their composite

would resemble a tic-tac-toe board. Each pattern was assigned attri-

butes corresponding to its x and y displacement from center, i.e., the

center pattern had attributes (0 ,0) , the lower right corner had attri-

butes (8,—8).

To economize on processing time, the information (dark or light)

in only one out of every three pixels was retained and the 32x32

picture so obtained was presented for recognition by the Associative

Memory. The results presented in Table 6.1 clearly show that in a

circumstance such as that described here, this system is capable of

detecting the dark object and estimating the location of the object.

The performance is estimated to be faster and superior to that of

optical contrast trackers. (See Figure 6.1 for a graphic illustration.)

After the servo’d camera had centered the object, the size of the

object is determined readily using approach as that described above.

In the third step, the centered and properly ratioed object was

presented for recognition by an Associat ive Memory made up of the patterns

exhibited in Figure 6.2.  Recognition of the object regardless of orien-

tation was achieved as shown by the results exhibited in Table 6.2.

Feedback ar-id confirmation could have been achieved with the use of

a dove prism but this final step was not implemented in this study.

—-------

~ 

—-----•---- — — - - - -—-—— —.- —•- -- • - —-•-—•- —.•----- -.—- -—- -
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7. CONCLUSIONS AND RECOMMENDATIONS

The experience accumulated in the course of this investigation

indicates that the Associative Memory technique is clearly suitable

for automated pattern recognition and that problems of location,

scale and orientation can be surmounted with this technique . However ,

it was equally clear that straightforward naive implementations

generally were not sufficiently immune to noise or to confusion

produced by unexpected objects.

Successful systems need to be implemented with tiers of Associative

Memories, including provisions for confirmation, feedback , recovery from

misidentification and also adaptivity.

It is recommended that systems capabilities of hierarchical arranqe-

ments of such memories be investigated with a view of determining whether —

such systems are ideally suited for implementing distributed intelligence

in complex systems.
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USING MAGNETIC DISC , ANALOG RECORDING ,
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TABLE 3.1

MEMORY CAPACITY OF ASSOCIATIVE MEMORY AND
USE ADVANTAGE RATIOS

Advantage of Technique
• 

1 (2)  ( 3) (4)
Memory Haxnming~ Memory In Storage In Processing

Dimension Distance Capacity Requirement Rate
K N N /Log

2
N N /Log

2
K

• 32 5 4 2 0.8 —
10 4 2 0. 8
15 6 3 1.2

64 10 5 1.6 0.8
20 9 2 . 25  1.5
30 12 3 2

128 20 8 2 .6  1.1
40 12 3 1.7
60 14 3.5 2.0

256 40 10 2.5 1.2
80 21 4.2 2.6
120 23 4.6 2.8

512 80 16 4 1.8
160 30 6 3.3
240 32 6.4 3.6

1024 480 47 7.8 7.8

2048 960 64 10.6 9.1

4096 1920 107 15.3 12.6
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Table 3.1 Footnotes:

(1) Minimum Hamming Distance Between Patterns in Memory .

(2) Memory Capacity - Number of Overlaid Patterns Stored

and Retrieved Without Error.

(3) Storage Capacity Advantage = (Requirement of Template Match ing

Technique/ Requirement in Associative Memory Technique )

• KN /KL0g
2
N = N /Log

2
N

(4) Processing Rate Advantage (Number of Operations in Template

Matching Technique/ Number of Operations in Associative Memory

Technique) = KN /KL0g
2

N = N /Log
2
K

This comparison does not take into account the additional advan-

tage due to the fact that N patterns are stored in place in the

Associative Memory method and N “ f etch and store” operations are

avoided in processing . That advantage is substantially larger than

those values listed in Table 3.1. 

- ----- - -~~~~~~- - -  -~~ - - - -~~~~~•—--
~~~~~~~~~~

-
~~~~~~~~~~

—-• • - •• - - - • - • •  •
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TABLE 4.1

• INTERPOLATIVE ESTIMATION OF ATTRIBUTES USING

SOt.~~ PATTERNS GENERATED IN A MEDICAL CONTEXT.

CAT EGORY 1.

TENTATIVE PATIENT ASSESSMENT ASSIGNED COMPIJTED DIFFERENCE
DIAGNOSIS PROFILE SEVILL SEVILL

21 1 2 0 0 0 0 0 0 0 00 0  150* 156.04 -6 04
21 1 2 0 1 0 0 1 0 0 00 0  180 166.74 13. 26
21 0 2 0 0 0 0 1 0 10 0 0  190 153. 25 36.75 

—

21 1 2 0 0 0 0 1 0 0 0 0 1 1:30 161. 13 13. :37
21 1 2 0 1 0 0 1 1 0 0 0 1 220 239. 69 -19. 69
21 1 2 0 0 0 0 1 0 1 0 0 0 220 156. 45 63. ~521 2 2 0 0 0 0 1 0 1 0 1 1 290 242. :32 47. 18
21 2 2 0 0 0 0 0 1 10 1 0  290* :307. 38 —17 :38
21 2 2 t~ 1 2 0 2 0 0 0 0 1 290 :367. 1.3 —77 . 13
21 0 2 0 1 0 0 2 1 1 0 0 0 290 277. 43 12. 57
21 2 2 1) 0 2 0 1 0 1 0 0 0 290 213. 24 76. 76
21 2 2 0 1 0 0 0 2 1 0 0 0 290 238. 10 1. 90
21 1 2 2 0 1 0 0 1 0 0 0 0 290* 234. 03 5. 97
21 2 2 2 1 0 0 1 0 0 0 0 1  315 317 :33 -2 -33
21 2 2 0 1 2 0 2 1 0 0 1 0 335 407. -30 -72. .30
21 4 0 2 1 0 0 2 0 1 0 0 1 400* 406. 00 -6. 00
21 2 2 0 0 2 0 1 0 5 0 1 0 400 424. 45 -24 45
21 4 2 2 1 0 0 2 0 0 0 3 0  440 478.54 -3:3 54
21 4 2 0 1 2 0 2 1 2 0 1 0 450* 447. 13 2. 37
21 4 4 0 1 2 0 1 1 1 0 1 0 450* 449. 32 0. 6:3
21 4 2) 0 2 4 1 0 1 01 0  475 447.16 27 3 4
21 4 2 2 1 0 0 2 0 10 0 0  425 418 52 6.48
21 4 0 3 0 0 0 1 1 1 0 3 0 500* 499. 17 0. :3:3
21 4 2 ) 1 2 2 2 1 10 3 1  475 435.05 -39 95
21 4 0 :3 1 2 0 2 2 1 0 1 0 550* 529. 94 20. 06

RMS ERROR : 35. 26

* I\:DICA ~~ES A TRAINING SET PATTERN

BEST AVAI LABLE COPY
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• TABLE 4.2

ADDITIONAL RESULTS DEMONSTRATING INTER-

POLATIVE ESTIMATION OF ATTRIBUTE VALUES .

CATEGORY 3.

TENTATIVE PATIENT ASSESSMENT ASSIGNED COMPUTED DIFFERENCE
DIAGNOSIS PROFILE SEVILL SEVILL

4 0 0 0 0 0 00 0 0 0 00  5* 23.95 -18 95
3 0 0 0 0 0 0 0 00 o o o  51 23 95 -18 95
3 0 0 0 1 0 0 0 00 0 0 0  10 25.81 -15 31

• 30 1 0 0 0 0 0 0 00 0 0 0  7 30. 54 -23 54
51 1 0 0 0 0 0 0 00 0 0 0  7 30 54 -2.3 54
7 1 0 0 0 0 0 0 00 0 0 0  7 30. 54 -23. 54
8 1 0 0 0 ( 0 0 0 0 0 0 0  7 30 54 -23. 54

10 1 0 0 0 0 0 0 00 0 0 0  7 30. 54 -2.3 54
S o o o o o o i o o o o o  20 49. 70 -29. 70

• 4 0 0 0 0 0 0 1 0 0 0 0 0  15 49. 70 —34.70
3 0 0 0 0 0 0 1 0 0 0 0 0 15 49. 70 —34. 70
3 0 0 0 0 0 0 0 1 0 0 0 0  10 34. 66 -24. 66
5 1 0 0 1 0 0 0 0 0 0 0 0  10 31,95 -21 95
5: 1 0 0 1 0 0 0 0 0 0 0 0 10 31. 95 -21. 95
6 0 0 0 1 0 0 1 0 0 0 0 0  15 55. 75 —40 . 75
3 0 0 0 1 0 0 1 0 0 0 0 0 20* 55. 75 -35. 75
6. 0 0 0 1 0 0 0 1 00 0 0  15 44.62 -29.62
8 1 0 0 0 0 0 0 10 0 0 0  30 39.36 —9.36.
8 0 0 0 0 0 0 0 0 1 0 0 0 20 32 94 -1~ 948 0 0 0 00 0 0 01 0 0 0  3t) 32.94 —2 .94
6 0 0 0 0 0 0 0 01 0 0 0  30* 32.94 —2 .94
51 1 0 0 1 0 0 1 00 0 0 0  40 64.57 —24 57
6 1 0 0 1 0 0 1 0 0 0 0 0 40 64. 57 -24. 57
7 1 0 0 1 0 0 1 0 0 0 0 0 40* 64. 57 -24. 57
8 1 0 0 1 0 0 0 10 0 0 0  40 49.45 -9. 45
8 0 0 0 1 0 0 0 1 0 0 0 1  60 82.38 -22 38
7 0 0 0 1 0 0 1 1 0 0 0 0 40 82. 13 -42 13
6 1 0 0 1 0 0 0 0 0 0 1 0  40 56.70 -16.70
6 1 0 0 0 0 0 0 0 1 0 0 0  25 40.40 -15 40
6 1 0 0 0 0 0 1 1 0 0 0 0 30 65. 77 -35 77
8 1 0 0 0 0 0 0 2 0 0 0 0  40 49 53 -9 53
8 1 0 0 1 0 0 1 0 0 0 0 1 60 84. 55 -24. 55
8 1 0 0 1 0 0 0 0 1 0 0 0  40 43.18 -3 18
6 1 0 0 1 0 0 0 0 1 0 0 0  50 43.18 6.82

31 1 0 0 1 0 0 1 0 0 0 1 0  75 115. 37 —40. 37
5 1 0 0 0 0 0 0 0 1 0 1 0  60 55. 07 4 .93
8 1 0 0 1 0 0 1 01 0 0 0  90 73. 48 16. 512
8 1 0 0 1 0 0 2 1 0 0 0 0  110* 113. 89 -3. 89
6 1 0 0 1 0 0 0 0 1 0 1 0  75 84. 95 -9. 951
8 1 0 0 1 0 0 0 0 1 0 1 0  90 84. 95 5. 05

BEST AVAILABLE COPY 
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TABLE 4.2 (C0NTINtJE~)

CATEGORY 3. (CONTINUED )

TENTATIVE PATIENT ASSESSMENT ASSIGNED COMPUTED DIFFERENCE
DIAGNOSIS PROF ILE SEV ILL SEV ILL

6 1 0 0 1 0 0 1 1 0 0 1 0 125 143. 11 —18. 11
3 1 0 0 0 0 0 1 1  1 0 0 0  115* 74.01 40.99
6. 1 0 0 0 0 0 1 0 1 0 1 0  110* 88.52 21. 48
7 1 0 0 1 0 0 2 2 0 00 0  150* 135.20 14. 80
5 1 0 0 1 0 2 0 0 0 0 0 0  150 77.52 72.48
6 0 0 0 1 0 0 1 1 1 0 1 0 125 1:30. 87 -5. 87
6. 1 0 0 1 1 0 0 0 1 0 1 0 115 154.68 -39. 63
1 0 0 0 0 0 3 0 0 0 0 0 0  160 :33. 97 71.03
1 0 0 0 0 0 3 1 0 0 000 175 146. 18 28.32
1 00 0 0 0 3 0 0 0 0 1 0  175 121. 58 53.42
1 00 0 1 0 3 1 0 0 0 0 0  190 185.22 4.78
1 00 0 1 0 3 0 1 0 0 0 0  190* 165.86 24. 14
2 0 0 0 1 0 3 0 0 0 0 1 0  190 179.60 10. 40

• • 6 1 0 0 1 0 0 1 1 0 0 3 1 250* 232. 94 17. 06
1 0 0 0 1  1 3 0 0 00 0 0  225 181. 44 43.56
:3 1 0 0 1 0 0 2 2 1 0 1 0 200 205. 65 -5. 65
2 0 0 0 1 0 3 1 1 0 0 0 0 225 1:36. 95 .38. 05

1 0 0 1 0 3 0 0 0 0 1 0  225 200. 22 24.7:3
1 0 0 0 1 1 3 1 0 0 0 0 0 22.0 217. 55 12. 45
2 1 0 0 0 0 3 1 0 0 0 1 0 235* 204.73 30.27
2 0 0 0 1 0 3 1 0 1 0 0 0 205 222. 86 -17. :36
2 0 0 0 1 0 3 2 1 0 0 0 0 225 180. 98 44. 02
5 2 0 0 1 0 0 2 2 0 0 3 0  300* 275. 36 24.64
1 1 0 0 0 0 3 0 0 1 0 1 0 235 250. 88 —15. :33
2 0 0 0 1 1 3 0 1 1 0 0 0 250* 236. 79 13. 21

‘30 1 0 0 1 0 3 1 1 0 0 1 1 310 245. 05 64. ~5
1 0 0 0 1 2 3 0 1 0 0 1 0 300 233. 66 66. 34

30 0 0 0 1 1 3 1 2 1 0 1 0 375* 345• 86 29. 14
3 2 0 0 1 0 2 2 1 2 0 1 0 400* .336. 66 63. :34

30 1 0 0 1 1 3 0 2 1 0 1 1 400 450. 17 —50. 17
30 1 0 0 1 2 3 0 2 1 1 1 1 500* 488. 96 11. 04

RMS ERROR: 30. 31

* INDICATES A TRAINING SET PATTERN

BF.S1 AVA1L&B~E COPY

~~~~~~~~~~~~~~~~~~~~~~~~
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• TABLE 5.1

SYSTEM SPECIFICATION OF CCD CAMERA
COMPUTER VIDEO SYSTEM

Overall System Specifications

Solid state CCD TV camera sensitive to light levels
from 10 to 1000 foot—candles (visible spectrum.)

CCD image sensor array consisting of lOOxlOO elements
(pi xels) .

Video data rate of 30 frames/second synchronized to
standard video systems.

Camera-to-computer distance of up to 500 feet.

Standard TV monitor display of input scene.

Computer control of camera pan , tilt, zoom, focus,
iris for automated tracking.

Computer controlled picture digitization.

Digitization of each picture element to 16 gray levels.

2500 words of 16 bit memory to hold one picture.

16K dual port semiconductor buffer memory for video data.

Standard TV monitor display of scene in buffer memory.

Random or sequential memory access by host computer.

Capability to load buffer memory from computer to display
computer generated scenes.

CAMAC computer interface.

Major Components

• .
. CCD image sensor camera.

Camera lens, pan, and tilt servos.

Level Shifters required for CCD operation.
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Major Conponents (cont’d)

Televis ion monitors.

Analog-to-digital converter.

Digital memory .

Digital-to-analog converter.

CAMAC interface .

CCD Image Sensor Camera Specifications

100% dynamic range capability for light levels from
10 to 1000 foot—candles of reflected illumination
(visible spectrum) .

lOOxlOO array of image sensitive elements.

Flexible operating rate to allow for synchronization
to standard video system scan rates.

16 gray level accuracy between input illumination and
corresponding output voltage.

Minimum of 15 db signa/noise ratio,
analog video signa/digital shifting
coupling noise.

Maximum of 5% output nonlinearity between
cells.

Maximum of 100 millivolts of dark noise @ 20°C.

Zoom Lens Specifications

Operational

Zoom Speed: 4 to 20 seconds
• Focus Speed : 8 to 35 seconds

Iris Speed: 2 to 5 seconds

Electrical

Input voltage : 12VDC (maximum)

Normal Operating
Current at By : 60 ma Running

150 ma at stop (with clutch slipping)
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Zoom Lens Specifications (cont’d)

Optical

Focal Length Range: 15-150mm

Relative Aperture : f:2.5

Maximum Coverage
Diameter : 15.9mm

Field Angles : 12.5 to 2.5 degrees

Lens Mount : ,C
~ (removable)

Pan-Tilt Drive Specifications

Operational

Angular Travel: Pan: 0 to 350 degrees

Tilt: + 90 degrees

Speed : Pan: 9 degrees/sec

Tilt: 4 degrees/sec

Electrical

Voltage : 24 VAC

Power : Pan 1OVA

Tilt 45VA

Normal Operating : Pan: .4 Pim p
Current Tilt: 1.8 Pimp
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TABLE 5.2

SYSTEM SPECIFICATIONS FOR FULL RESOLUTION COMPUTER VIDEO
INTE RFACE USING VIDICON CAMERA , MAGNETIC DISC , ANALOG

• RECORDING AND TINE BASE EXPANSION AND COMPRESSION

Input Signal

Compatibility

US Television Std EIA-RS-l8OA
No. of lines/frame 525
NO. of fields/frame 2, interlaced
Field rate 59.94 Hz
Line rate 15734 KHz
Field time 16.6834 msec
Line time 63.5566 ~isecSignal amplitude (non.) l.OVpp composite

Frame Memory

Storage media 6.5” video disc
Rotation speed 3596.40 rpm
Disc control servocontrolled
Disc jitter (time base stability) < 500 nsec/rev
Video heads flying - 1 TV field/track
I{eadsdown rpm “~ 3000 rpm
Head/disc velocity 1000—1150 i.p.s.
Head flying height 8-12 lAin .
Head gap 40-50 iiin.
Track width 0.015 in.
Max. no of tracks/in. 40
Storage method Wideband FM

Blanking @ 5.5mHz
Peak wht. @ 7.5 mHz

Recording method Saturated
Recording sequence 1 frame erase

1 frame write
Recording lockout time 66.733 msec
E-E availability During record mode only
Input/output impedance 75S~+ 5%, dc-5 mHz
Input/output signal levels 1.0 vpp composite , nominal

S/Hum ratio > 40 db
pp

_ _  _  A
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Praise Memory (cont’d)

S/N ratio > 45 db ~~~~ — (unweighted)

Freq response dc—3.0 mHz ± 1db
dc—4.2 mHz + 3db

Tilt “p 2% 
—

“K”—factor “ 3%
Time base stability < + 250 nsec, peak/field

Timebase Conpandor Signal Processing

• 
• 

Technology Digital processing
Input compatibility 10. Vpp analog comp video
Outputs available 1.0 vpp analog LF video

8—bit digital video, 34.0908K
samples/sec

No. of lines addressed
per field frame 240/480
No. of samples/line 512
Sample interval 97.778 nsec
Sampled active line time 50,062 l.isec
Line access Sequential or random

Line throughput time 19.067 ins for 512 8—bit words

A/D,D/A resolution 8-bit
High speed A/D converter clock 10.22725 MHz
Timebase jitter correction metl~ d Parallel digital data track
Data encoded Composite sync
Encode method Bi-phase , M
Encode rate 4.09090 MHz
Datastream clock recovery method PLL
Recovered reference freq . 2.04545 MHz

Fast 2 line buffer memory MOS shift register
Capacity l024x8 bits
Write clock — from Hi speed AID 10.22725 MHz

Read clock - to RAM 1.022725 MHZ

Slow 2 line buffer memory MOS RAM
• Capacity 1024x8 bits

Write clock - from shift register 1.022725 MHz
Read clock - to D/A converter 34.0908 KHz

- •—..-•.--—-—-•,-.—-.— .•. .. — -— .--•--- -S. —. ._ -. _-.._~ - ...—.. - ..•-.. —•.-.- - .—.--. . .-. ,.. -.- -.--- —.-.. -. .__ —__j___ ..—~~~ .-. —.
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TABLE 6.1 DEMONSTRATION OF SUCCESSFUL TRACKING OF LOCATION— OF DARK OBJECT

OBJECT AT POSITION 1 (See Figure 6.1 for illustration)

Coarse Position estimate at (—5,19)
After adjustment, fine estimate at (-1 ,7 )
Af-er adjustment, coarse estimate at ( 0,0

fine estimate at ( 3,7
After adjustment both estimates
return (0,0) — Object is centered.

OBJECT AT POSITION 2

Coarse Position estimate at (-2,20)
After adjustment, fine estimate at C 4,7
After adjustment, coarse estimate at C 0,0
Fine position estimate at (—2 ,7 )
After adjustment both estimates
return (0,0) - object is centered.

CBJECT AT POSITION 3

Coarse Position estimate at (23,-23)
After adjustment fine estimate at (-1, 7 )
After adjustment both estimates
return (0,0) - object is centered.

OBJECT AT POSITION 4

Coarse position estimate at (—23 ,—23)
After adjustment fine estimate at C— 7, —7)
After adjusteinent, coarse estimate at C 0, 0

fine estimate at C 1, 0 )
After adjustment both estimates
return (0,0) - object is centered.

OBJECT AT POSITION 5

Coarse position estimate at (-23,23)
After adjustment , fine estimate at (— 4 , —6 )
After adjustment, both estimates
return (0 ,0) — object is centered.

-.-•

~

- - .- -
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TABLE 6.1 (Cont’d)

OBJECT AT POSITION 6

Coarse position estimate at (-2 ,0)
After adjusteintrie, fine estimate at C 7,7)
After adjustment, coarse estimate at (—2 ,—2)
After adjustment, fine estimate at C 6,7)
After adjustment, coarse estimate at C 0,0)

fine estimate at ( 0,5)
After adjustment, both estimates
return (0,0) - object is centered.

OBJECT AT POSITION 7

Coarse position estimate at (—17 ,—23)
After adjustment, fine estimate at C 0, 0)

coarse estimate at (23 , —23)
After adjustment, fine estimate at C 0, 7)
After adjustment both estimates
return (0,0) — object is centered. 

~~~~~~~~~ - -—~~~~-—~~~~~~~~--— -..~~~~—-
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TABLE 6.2 DEMONSTRATION OF SUCCESSFUL RECOGNITION OF

TANKS REGARDLESS OF ORIENTATION

• • Recognised as
Pattern *

. 1 2 3 4 5 6 7 8 9 10 11 12
* of 

1 
• 

1124 852 1000 788 808 832 1068 884 826 752 764 884Pattern
Presented 2 872 1128 1020 800 684 764 1016 872 924 668 720 792

~ 692 900 1168 828 736 624 932 788 1072 544 684 692

4 844 748 784 1156 976 864 780 892 680 1064 844 756

5 712 744 868 896 1276 892 656 800 596 1020 928 832

6 728 880 668 704 988 1204 632 752 476 892 944 968

7 984 888 932 848 684 748 1248 880 876 708 632 728

8 ~~ 760 900 864 692 564 1000 1032 764 506 712 704

9 572 852 1072 948 784 712 1004 740 1264 704 692 700

10 772 644 672 876 1008 832 564 740 680 1288 1012 780

11 780 724 744 868 976 904 580 812 600 1008 1220 820

12 772 Th0 1! 440 628 920 1016 532 804 536 912 972 1068

Numbers exhibited are coefficients of correlation yielded by
Associative Memory . Correct recognition is demonstrated by
diagonal elements of array being the largest in any row .

--

— — .—.-
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